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Abstract: Recently appeared ideas about back in time entanglement [1] and indefinite event casual order [2] can be 
effectively implemented with the help of physically feasible mechanism of g-qubits [3]. The mechanism uses the g-
qubit states as solution of Maxwell equations in terms of geometric algebra, along with clear definition of a complex 
planes as bivectors in three dimensions. This formalism replaces conventional quantum mechanics states, namely 
objects constructed in the complex vector Hilbert space framework, by the framework of elements of even subalgebra 
of geometrical algebra 𝐺3

+ which play the role of operators acting on observables [4].  
 
 
 
 
 
 
 
 

    
  

1. Introduction 

Quantum computers and quantum cryptography are potentially the first commercial 
applications of quantum physics. Unfortunately, quantum mechanics in its existing 
formulation is a no-work-around obstacle to bring these potential applications into 
reality. The theory needs to be reformulated in adequate logical and mathematical 
formalism. A lot of continuing confusion comes from the lack of precision in using terms 
like “state”, “observable”, “measurement of observable in a state”, etc. This terminology 
creates ambiguity because the meaning of the words differs between prevailing 
quantum mechanics and what is logically and naturally assumed by the human mind in 
scientific researches and generally used in areas of physics other than conventional 
quantum mechanics. We see no successful, reliable results yet in creating quantum 
computers due to working with bad, inappropriate tools, see Fig.1.1. 

 

          

Fig.1.1. Tensor product formal property suggested to be physically real event connection 

 

Absolutely necessary modifications are clear redefinitions of the “state”, “observable”, 
“measurement of observable” and “result (value) of measurement of observable” 
notions [4], [5]. 
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The new definitions follow general paradigm: 

- Measurement of observable 𝑂(𝜇) in state1 𝑆(𝜆) is a map: 

(𝑆(𝜆), 𝑂(𝜇)) ⟶  𝑂(𝜈), 

       where 𝑂(𝜇) is an element of the set of observables. 𝑆(𝜆) is element of       
       another set, set of states. 

- The result (value) of a measurement of observable 𝑂(𝜇) by the state 𝑆(𝜆) is a 
map sequence 

(𝑆(𝜆), 𝑂(𝜇)) ⟶  𝑂(𝜈) ⟶ 𝑉(𝐵), 

       where 𝑉 is a set of (Boolean) algebra subsets identifying possible results of      
       measurements. 

The importance of the above definitions becomes obvious even from trivial examples, 
see Fig.1.2 – 1.4.  

Let’s take a point moving along straight line: 

 

Fig.1.2. A state acts on observable in one-dimensional movement 

 

In this classical mechanics example, it does not matter do we consider evolution of 
“state” or of “measurement of observable by the state” or of “the result of 
measurement”.  

The situation radically changes if the process entities become belonging to a plane, 
though we can only see them in one dimensional projection: 

 

Fig.1.3. State acts in two dimensions though the result is available just as projection  

 

                                              
1 Correctly would be to say “by a state”. State is operator acting on observable. 
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Further, if the evolution is not fully deterministic due to probability distribution of states 
then probabilities of the results of measurements are obviously calculatable as relative 
measures of subsets of the level sets (fibers) of states giving the same result: 

 

Fig.1.4. Probabilistic distribution of states results in probabilistic measurements 

 

The option to expand, to lift the space where physical processes are considered, may 
have critical consequence to the theory. A kind of expanding is the core of the 
suggested formulation aimed at the theory that is deeper than conventional quantum 
mechanics. 

Let’s take more sophisticated example of expanding the scene of physical situation and 
get fibration of quantum mechanical qubits to g-qubits, fibers (level sets), elements of 
even subalgebra of geometrical algebra 𝐺3

+. 

Any 𝐶2 qubit (𝑥1+𝑖𝑦1
𝑥2+𝑖𝑦2

) has lift in 𝐺3
+ [5]: 

𝑥1 + 𝑦1𝐵1 + 𝑦2𝐵2 + 𝑥2𝐵3 = 𝑥1 + 𝑦1𝐵1 + 𝑦2𝐵1𝐵3 + 𝑥2𝐵3 = 𝑥1 + 𝑦1𝐵1 + (𝑥2 + 𝑦2𝐵1)𝐵3 

where {𝐵1, 𝐵2, 𝐵3} is an arbitrary triple of unit value bivectors in three dimensions 
satisfying, with not critical assumption of right-hand screw orientation 𝐵1𝐵2𝐵3 = 1, the 
multiplication rules, see Fig.1.5: 

𝐵1𝐵2 = − 𝐵3, 𝐵1𝐵3 = 𝐵2, 𝐵2𝐵3 = − 𝐵1 

 

Fig.1.5. Basis of bivectors and unit value pseudoscalar 

 

The lift uses the {𝐵1, 𝐵2, 𝐵3} reference frame which can be arbitrary rotated in three 

dimensions. In that sense we have principal fiber bundle 𝐺3
+ → 𝐶2 with the standard fiber 

as group of rotations which is also effectively identified by elements of 𝐺3
+. 

Probability to get result of measurement in interval 
dr around r (senseless “find system in state r” as in 
conventional quantum mechanics) is the integral of 
probability density of states over the strip ds. 
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The lift 𝑥1 + 𝑦1𝐵1 + (𝑥2 + 𝑦2𝐵1)𝐵3 is the geometric algebra sum of two items, 𝑥1 + 𝑦1𝐵1 
and (𝑥2 + 𝑦2𝐵1)𝐵3, the first one is lift of the quantum mechanical state |0⟩, in usual Dirac 

notations, and the second one – lift of |1⟩. The action of a 𝐺3
+ state on observable, also 

element of algebra 𝐺3, is not as simple as vector translations in the above example. The 
state action is  

(𝑆(𝜆), 𝑂(𝜇)) ⟶  𝑂(𝜈)
𝑑𝑒𝑓
↔ 𝑂(𝜈) = 𝑆−1(𝜆) 𝑂(𝜇)𝑆(𝜆) 

The action is not distributive since the results of measurement is not linear combination 
of measurements by 𝑥1 + 𝑦1𝐵1 and (𝑥2 + 𝑦2𝐵1)𝐵3. The first one makes rotation in plane 

𝐵1 while the second one flips the result after rotation in 𝐵1 over that plane. Nevertheless, 
any state 𝑥1 + 𝑦1𝐵1 + (𝑥2 + 𝑦2𝐵1)𝐵3 can be reduced to either lift, fiber, of |0⟩ or |1⟩ in 
properly chosen bivector basis [5].  

The states as g-qubits store much more information than classical bits or conventional 
quantum mechanical qubits, see Fig.1.6: 

 

            

Fig.1.6. Differences between bits, qubits and g-qubits 

 

For example, in the quantum cryptography the g-qubit communication scheme can use 
sequences of g-qubits bearing encoded information. The sequences can be effectively 
created by instant Clifford translations of original states using some unit value 
bivector(s) and angle(s). The planes of the Clifford translations can be fixed or varying, 
as well as the angles. These parameters of Clifford translations comprise the “secret 
key”. On the other end of the communication channel the receiver needs this key to 
decode the sequence. In the simplest protocol the key is just the fixed plane definition 
and the value of angle. In the current theory the same key works both in encoding and 
decoding (Fig.1.7.)  

 

 

Fig.1.7. Decoding of encoded g-qubits by “secret key” – red bivector 
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2. Action of an arbitrary plane Clifford translations on states which are the 
Maxwell equation solutions 

It was shown in [3] that g-qubits implemented via the two basic solutions of Maxwell 
equations in geometric algebra terms may have the form: 

                       𝛼 + 𝛽𝐵1 + 𝛼𝐵2 + 𝛽𝐵3 = 𝛼 + 𝛽𝐵3 + (𝛼 + 𝛽𝐵3)𝐵2  (2.1) 

The (2.1) g-qubit, when scaled to unit value element of 𝐺3
+, 

𝛼

√2(𝛼2 + 𝛽2)
+

𝛽

√2(𝛼2 + 𝛽2)
𝐵1 +

𝛼

√2(𝛼2 + 𝛽2)
𝐵2 +

𝛽

√2(𝛼2 + 𝛽2)
𝐵3 

can be written in standard exponential form: 

                               cos𝜑 + sin𝜑 𝐼𝐵 = 𝑒
𝐼𝐵𝜑                                               (2.2) 

In the considered case the (2.1) – (2.2) g-qubits are linear combinations of the two 

equally weighted basic solutions of the Maxwell equation 𝐹+ and 𝐹−, 𝜆𝐹+ + 𝜇𝐹− with 𝜆 =

𝜇 = 1. In this case the general linear combination, see [6], [7], reads: 

𝜆𝐹+ + 𝜇𝐹−|λ=μ=1 = 2 cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟] (
1

√2
cos𝜔𝑡 + 𝐼𝑆

1

√2
sin𝜔𝑡 + 𝐼𝐵0

1

√2
cos𝜔𝑡 + 𝐼𝐸0

1

√2
sin𝜔𝑡) =

2 cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟] (cos𝜑 + sin𝜑 (𝐼𝑆
sin𝜔𝑡

√1+(sin𝜔𝑡)2
+𝐼𝐵0

cos𝜔𝑡

√1+(sin𝜔𝑡)2
+ 𝐼𝐸0

sin𝜔𝑡

√1+(sin𝜔𝑡)2
))    (2.3) 

where cos𝜑 =
1

√2
cos𝜔𝑡 and sin𝜑 =

1

√2
√1 + (sin𝜔𝑡)2. The state (2.3) is of the form (2.2) 

because 𝛼 = 𝛽2 and 𝛽1 = 𝛽3.  

I will call that kind of g-qubits spreons due to their spreading over the whole three-
dimensional space for all values of time, along with the results of measurement of any 
observable. 

In the following I use the triple of unit value orthonormal bivectors {𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0} where 𝐼𝑆 is 

bivector spanned by initial vector of magnetic field and initial vector of electric field. 

Bivector 𝐼𝐵0 is dual to initial vector of magnetic field, 𝐵0 = 𝐼3�⃗⃗⃗�02, and 𝐼𝐸0 is dual to initial 

vector of electric field. The triple will play the role of the bivector basis {𝐵1, 𝐵2, 𝐵3} which 

becomes fixed in that way.  

Good to remember that the two basic solutions 𝐹+ and 𝐹− differ only by the sign of 𝐼3𝐼𝑆 [6], 

which is caused by orientation of 𝐼𝑆 that in its turn defines if the triple {�̂�, �̂�, ±𝐼3𝐼𝑆} 3 is right-

hand screw or left-hand screw oriented [7]. 

Action of Clifford translation by 𝛾 in arbitrary plane 𝐵𝐶 on the state (2.2) is, by definition, 

𝑒𝐼𝐵𝜑 → 𝑒𝐼𝐵𝐶𝛾𝑒𝐼𝐵𝜑.  

                                              
2 If we have a unit value bivector 𝐵 then 𝐵 and 𝐼𝐵 can be used equivalently.  
 
3 For any vector the notation is used:  �̂� = �⃗� |�⃗�|⁄  
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Remark 2.1: 

If Clifford translation of a state 𝑒𝐼𝑆(𝑡)𝜑(𝑡) is associated with a Hamiltonian, that’s the 

translation is 𝑒
−𝐼3

𝐻(𝑡0)

|𝐻(𝑡0)|
|𝐻(𝑡0)|∆𝑡𝑒𝐼𝑆(𝑡0)𝜑(𝑡0), where Hamiltonian 𝐻(𝑡) is lift of some Hermitian 

matrix (
𝑎 + 𝑏 𝑐 − 𝑖𝑑
𝑐 + 𝑖𝑑 𝑎 − 𝑏

) [6], [7], [8], and 𝐼3
𝐻(𝑡0)

|𝐻(𝑡0)|
≡ 𝐼𝐻(𝑡0) is generalization of imaginary 

unit in the current theory, then: 

𝑒𝐼𝑆(𝑡0+∆𝑡)𝜑(𝑡0+∆𝑡) = 𝑒−𝐼𝐻(𝑡0)|𝐻(𝑡0)|∆𝑡𝑒𝐼𝑆(𝑡0)𝜑(𝑡0) 

and    lim
∆𝑡→0

∆𝑒𝐼𝑆(𝑡0)𝜑(𝑡0)

∆𝑡
= lim
∆𝑡→0

𝑒𝐼𝑆(𝑡0+∆𝑡)𝜑(𝑡0+∆𝑡)−𝑒𝐼𝑆(𝑡0)𝜑(𝑡0)

∆𝑡
=

lim
∆𝑡→0

(1−𝐼𝐻(𝑡0)|𝐻(𝑡0)|∆𝑡)𝑒
𝐼𝑆(𝑡0)𝜑(𝑡0)−𝑒𝐼𝑆(𝑡0)𝜑(𝑡0)

∆𝑡
= −𝐼𝐻(𝑡0)|𝐻(𝑡0)|𝑒

𝐼𝑆(𝑡0)𝜑(𝑡0) 

that immediately gives the Schrodinger equation for the state 𝑒𝐼𝑆(𝑡)𝜑(𝑡). That means that 

Schrodinger equation governs evolution of operators, states, which act on observables. 

End of the Remark 2.1. 

 

Take the spreon (2.3): 

𝐹+ + 𝐹− = 2 cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟] (
1

√2
cos𝜔𝑡 + 𝐼𝑆

1

√2
sin𝜔𝑡 + 𝐼𝐵0

1

√2
cos𝜔𝑡 + 𝐼𝐸0

1

√2
sin𝜔𝑡) 

Its Clifford translation by 𝑒𝐼𝐵𝐶𝛾 = cos 𝛾 + sin 𝛾(𝛾1𝐼𝑆 + 𝛾2𝐼𝐵0 + 𝛾3𝐼𝐸0) gives: 

2 cos𝜔[(𝐼3𝐼𝑆) ∙ �⃗�] [
1

√2
(cos 𝛾 cos𝜔𝑡−𝛾1 sin 𝛾 sin𝜔𝑡 − 𝛾2 sin 𝛾 cos𝜔𝑡 − 𝛾3 sin 𝛾 sin𝜔𝑡) +

1

√2
(cos 𝛾 sin𝜔𝑡 + 𝛾1 sin 𝛾 cos𝜔𝑡−𝛾2 sin 𝛾 sin𝜔𝑡 + 𝛾3 sin 𝛾 cos𝜔𝑡)𝐼𝑆 +

1

√2
(cos 𝛾 cos𝜔𝑡+𝛾

1
sin 𝛾 sin𝜔𝑡 + 𝛾2 sin 𝛾 cos𝜔𝑡 − 𝛾3 sin 𝛾 sin𝜔𝑡)𝐼𝐵0 +

1

√2
(cos 𝛾 sin𝜔𝑡−𝛾

1
sin 𝛾 cos𝜔𝑡 + 𝛾

2
sin 𝛾 sin𝜔𝑡+ 𝛾3 sin 𝛾 cos𝜔𝑡)𝐼𝐸0]    (2.4) 

that is defined for all values of 𝑡 and 𝑟, in other words the result of Clifford translation 

instantly spreads through the whole three-dimensions for all values of time. 

The Hopf fibration, measurement of any observable 𝐶0 + 𝐶1𝐵1 + 𝐶2𝐵2 + 𝐶3𝐵3 in the 
current formalism (see [8], Sec.5.1): 
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𝐶0 + 𝐶1𝐵1 + 𝐶2𝐵2 + 𝐶3𝐵3
𝛼+𝛽1𝐵1+𝛽2𝐵2+𝛽3𝐵3
→               𝐶0

+ (𝐶1[(𝛼
2 + 𝛽1

2) − (𝛽2
2 + 𝛽3

2)] + 2𝐶2(𝛽1𝛽2 − 𝛼𝛽3) + 2𝐶3(𝛼𝛽2 + 𝛽1𝛽3))𝐵1
+ (2𝐶1(𝛼𝛽3 + 𝛽1𝛽2) + 𝐶2[(𝛼

2 + 𝛽2
2) − (𝛽1

2 + 𝛽3
2)] + 2𝐶3(𝛽2𝛽3 − 𝛼𝛽1))𝐵2

+ (2𝐶1(𝛽1𝛽3 − 𝛼𝛽2) + 2𝐶2(𝛼𝛽1 + 𝛽2𝛽3) + 𝐶3[(𝛼
2 + 𝛽3

2) − (𝛽1
2 + 𝛽2

2)])𝐵3 

with: 

𝐵1 = 𝐼𝑆, 𝐵2 = 𝐼𝐵0, 𝐵3 = 𝐼𝐸0 ,  

𝛼 = 2 cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟]
1

√2
(cos 𝛾 cos𝜔𝑡 − 𝛾1 sin 𝛾 sin𝜔𝑡 − 𝛾2 sin 𝛾 cos𝜔𝑡 − 𝛾3 sin 𝛾 sin𝜔𝑡) 

𝛽1 = 2 cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟]
1

√2
(cos 𝛾 sin𝜔𝑡 + 𝛾1 sin 𝛾 cos𝜔𝑡−𝛾2 sin 𝛾 sin𝜔𝑡 + 𝛾3 sin 𝛾 cos𝜔𝑡) 

𝛽2 = 2 cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟]
1

√2
(cos 𝛾 cos𝜔𝑡+𝛾1 sin 𝛾 sin𝜔𝑡 + 𝛾2 sin 𝛾 cos𝜔𝑡 − 𝛾3 sin 𝛾 sin𝜔𝑡) 

𝛽3 = 2 cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟]
1

√2
(cos 𝛾 sin𝜔𝑡−𝛾1 sin 𝛾 cos𝜔𝑡 + 𝛾2 sin 𝛾 sin𝜔𝑡 + 𝛾3 sin 𝛾 cos𝜔𝑡) 

gives a 𝐺3
+ element 𝑂(𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝛾, 𝛾1, 𝛾2, 𝛾3, 𝜔, 𝑡, 𝑟) with  scalar component 

𝐶0 and bivector components being up to the second order polynomials of sin 𝛾, cos 𝛾, 
sin𝜔𝑡 and cos𝜔𝑡 that spread through the whole three-dimensional space at any time, all 

components multiplied by 4(𝑐𝑜𝑠𝜔 [(𝐼3𝐼𝑆) ⋅ 𝑟])
2. 

 

3. Parallelism of computational algorithm 

The instant of time when the Clifford translation is applied makes no difference for the 
resulting state (2.4) because it simultaneously is redefined for all values of 𝑡. We have 
changing of the state also backward in time. That is obvious demonstration that the 
suggested theory allows indefinite event casual order. In that way, as assumed by the 
physicists working on the causal asymmetry problems [9], the very notion of the concept 
of cause and effect disappears, thus we might not perceive time.  

Further, we get superiority of the suggested theory over classical computations because 
all measured observable values get available all together, not through looking one by 
one. Simultaneous availability has always been the proof of calculational supremacy of 
hypothetical qubit entangled quantum computers. The current approach transcends 
those computational schemes also since the latter have tough problems of creating 
large sets of qubits. In the current scheme any number of test observables can be 
placed into continuum of the (𝑡, 𝑟) dependent values of the spreon state, thus fetching 

out any amount of values 𝑂(𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝛾, 𝛾1, 𝛾2, 𝛾3, 𝜔, 𝑡, 𝑟), spread over three-

dimensions and at all instants of time not generally following cause/effect ordering. 

As I mentioned once, quantum computer built in the current theory approach is a kind of 
analogue computer, aimed, first of all, at modeling three-dimensional vector fields. 
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Since general result of measurement when Clifford translation takes place in an 
arbitrary plane is pretty complicated I am taking first the special case 𝛾1 = 1 and 𝛾2 =
𝛾3 = 0 (Clifford translation acts in plane 𝐼𝑆). The result is: 

𝑂(𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝛾, 𝛾1, 𝛾2, 𝛾3, 𝜔, 𝑡, 𝑟)𝛾1=1,𝛾2=𝛾3=0 
= 4(𝑐𝑜𝑠 𝜔 [(𝐼3𝐼𝑆) ⋅ 𝑟])

2[𝐶0 + (𝐶2 𝑠𝑖𝑛 2𝛾 + 𝐶3 𝑐𝑜𝑠 2𝛾)𝐼𝑆
+ (𝐶1 𝑠𝑖𝑛 2𝜔𝑡 + 𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 2𝜔𝑡 (𝐶2 + 𝐶3))𝐼𝐵0
+ (−𝐶1 𝑐𝑜𝑠 2𝜔𝑡 + 𝑠𝑖𝑛 2𝛾 𝑠𝑖𝑛 2𝜔𝑡 (𝐶2 − 𝐶3))𝐼𝐸0] 

Interesting thing is that the component of measurement lying in plane 𝐼𝑆 is only defined 
by the applied Clifford translation parameters and does not change with time 4. It only 
depends on the 𝑟 value and Clifford translation parameter 𝛾.  

In two other cases 𝛾2 = 1, 𝛾1 = 𝛾3 = 0 and 𝛾3 = 1, 𝛾1 = 𝛾2 = 0 we get correspondingly: 

𝑂(𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝛾, 𝛾1, 𝛾2, 𝛾3, 𝜔, 𝑡, 𝑟)𝛾2=1,𝛾1=𝛾3=0 
= 4(𝑐𝑜𝑠 𝜔 [(𝐼3𝐼𝑆) ⋅ 𝑟])

2[𝐶0 + (−𝐶1 𝑠𝑖𝑛 2𝛾 + 𝐶3 𝑐𝑜𝑠 2𝛾)𝐼𝑆
+ (𝐶2 𝑐𝑜𝑠 2𝜔𝑡 + 𝑠𝑖𝑛 2𝜔𝑡 (𝐶1 𝑐𝑜𝑠 2𝛾 +𝐶3𝑠𝑖𝑛 2𝛾))𝐼𝐵0
+ (𝐶2 𝑠𝑖𝑛 2𝜔𝑡 − 𝑐𝑜𝑠 2𝜔𝑡 (𝐶1 𝑐𝑜𝑠 2𝛾 +𝐶3𝑠𝑖𝑛 2𝛾))𝐼𝐸0] 

and 

𝑂(𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝛾, 𝛾1, 𝛾2, 𝛾3, 𝜔, 𝑡, 𝑟)𝛾3=1,𝛾1=𝛾2=0 
= 4(𝑐𝑜𝑠 𝜔 [(𝐼3𝐼𝑆) ⋅ 𝑟])

2[𝐶0 + 𝐶3𝐼𝑆
+ (𝐶1(𝑐𝑜𝑠 2𝛾 𝑠𝑖𝑛 2𝜔𝑡 + 𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 2𝜔𝑡)

+ 𝐶2(𝑐𝑜𝑠 2𝛾 𝑐𝑜𝑠 2𝜔𝑡 − 𝑠𝑖𝑛 2𝛾 𝑠𝑖𝑛 2𝜔𝑡))𝐼𝐵0
+ (𝐶1(𝑠𝑖𝑛 2𝛾 𝑠𝑖𝑛 2𝜔𝑡 − 𝑐𝑜𝑠 2𝛾 𝑐𝑜𝑠 2𝜔𝑡)

+ 𝐶2(𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 2𝜔𝑡 + 𝑐𝑜𝑠 2𝛾 𝑠𝑖𝑛 2𝜔𝑡))𝐼𝐸0] 

In any case we get bivector, that is equivalent to a three-dimensional vector at point 𝑟 
and arbitrary value of time which is in no way related to the instant of time of the Clifford 
translation action on the state. The values of the bivector components are defined by 
the measured observable components, vector 𝑟 of the point where the observable is 
placed, time of measurement (all of them comprise the input of the computational 
algorithm), along with Clifford translation parameters.  

 

4. Conclusions 

Two seminal ideas – variable and explicitly defined complex plane in three dimensions, and 

the 
+
3G  states5 as operators acting on observables – allow to put forth comprehensive and 

                                              
4 It can be verified, though tediously to calculate, that it remains true for any arbitrary Clifford translation 
plane. 
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much more detailed formalism appropriate for quantum mechanics in general and 

particularly for quantum computing schemes.  

Solution of the Maxwell equation(s) in the 𝐺3 frame particularly gives 𝐺3
+ state, spreon, 

spreading over the whole three-dimensional space for all values of time, along with the 

results of measurement of any observable. The state can particularly change instantly 

backward in time under Clifford translations. Very notion of the concept of cause and 

effect disappears, thus we might not perceive time. Computations, executed through 

Clifford translations, return all measured observable values all together. Any number of 

test observables can be placed into continuum of the (𝑡, 𝑟) dependent values of the 

spreon state, thus fetching out any amount of values. 
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